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Synthetic data generation with a probabilistic model
▶ Synthetic data: proposed by Rubin (1993) assuming probabilistic models

▶ Current, the term is used in broader sense

1. Assume (a family of) the distribution of the original data: f(yorig|θ)

2. Learn the distribution of the original data: θ̂ or f(θ|yorig)

3. Randomly generate synthetic values: f(ỹsynt|yorig) =
∫
f(ỹsynt|θ)f(θ|yorig)dθ
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Why is variance estimation with synthetic data important?

▶ Jerry Reiter (Duke) and colleagues have showed synthetic data generated

with nonparametric Bayesian models support well user’s various analyses:

▶ plausible point estimators, e.g., regression coefficients β̂

▶ and honest variance estimator, e.g., V̂ (β̂)

V (θ̂synt) = V (θ̂orig) + U where U is uncertinty due to synthesis

▶ Some data privacy methods cannot measure U or provide incorrect V (θ̂synt)

▶ Hypotheses testing results in false positive

⇒ reproducibility issues in scientific research
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ADD HYPOTHESIS TESTING
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CHECK IN SIMUL

Modeling survey sampilng data

▶ Unequal probability sampling

: Distribution of survey sample often differs from that of finite population.

Finite population Simple random sample Poisson sample

▶ e.g., establishment surveys: Large companies receive high inclusion probability

⇒ The variance of total sales gets lower.

▶ Survey weights wi are used to derive a correct (design-unbiased) estimtor.

▶ Assume that an agency wants to generate synthetic (finite) populations.
3
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What likelihood functions need to be used?

Finite population Simple random sample Poisson sample

Some (probabilistic) model-based approaches with survey weights

1. Disregarding the survey weights,
∏n

i=1 f(yi|θ) = ?

2. Reconstruct the finite pop. (bootstrap), f(y1, . . . , yN |θ) =
∏N

i=1 f(ỹi|θ),

where ỹi = yi for sampled units and other ỹi are estimated/resampled.

3. Using the pseudo likelihood, f(y1, . . . , yN |θ) ≈
∏n

i=1 f(yi|θ)wi .
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Bayesian pseudo posterior approach (Savitsky and Toth, 2016)

Assuming that (wi − 1) non-sampled units have the same values as a sampled

unit yi in evaluating the (pseudo) likelihood fn. lpse(θ) =
∏n

i=1 f(yi|θ)wi ,

fpse(θ|yn,wn) = fpse(θ|y1, . . . , yn, w1, . . . , wn) ∝
n∏

i=1

f(yi|θ)wi · f(θ)

▶ The pseudo posterior approach generates synthetic data that result in

▶ consistent point estimator θ̂ but

▶ underestimated variance estimator E[V̂ (θ̂)] < V (θ̂).

▶ Solutions

▶ William and Savitsky (2021) suggested a post-processing after MCMC.
▶ We propose an adjustment given during MCMC, so

▶ correct synthetic populations are generated during MCMC, and

▶ handle imcomplete survey data with missing records.
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For the pseudo posterior distribution

fpse(θ|yn,wn) = fpse(θ|y1, . . . , yn, w1, . . . , wn) ∝
n∏

i=1

f(yi|θ)wi · f(θ),

we proved that

1. E(θ|Data) with fpse is asymptotically unbiased. [Bernstein–Von Mises]

(nQpse
0 )

1/2
fpse(θ|y) → N (θ0, I) as n → ∞ where Qpse

0 = −E0

[
∇2lpse(θ)

]
2. Posterior variance of θ is not close to the variance of the posterior mean for

repeated sampling, i.e., E(V̂ (θ|Data)) ̸= V (Ê(θ|Data)) [Godambe information]

(
nQpse

0 P pse,−1Qpse
0

)1/2 (
θ̂pse
n − θ0

)
→ N (0, I) where P pse = E0

[
∇lpse(θ)∇l⊤pse(θ)

]
* Sandwich estimator for the misspecified likelihood

* With the original pseudo posterior approach, P pse ̸= Qpse
0 .
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Suggestion: Variance-adjusted pseudo posterior

We suggest to use the power of the adjusted weights κwi,

fadj(θ|y1, . . . , yn, w1, . . . , wn) ∝
n∏

i=1

f(yi|θ)κwi ·f(θ) where κ =

∑n
j=1 wj∑n
j=1 w

2
j

.

Then,

1. E(θ|Data) with fadj is asymptotically unbiased. [Bernstein–Von Mises]

(nQ0)
1/2 fadj(θ|y) → N (θ0, I) as n → ∞ where Q0 = −E0

[
∇2ladj(θ)

]
2. With the adjusted weights, P 0 = Q0 = −E0

[
∇2ladj(θ)

]
, so the posterior mean

with the adjusted pseudo likelihood follows

√
n
(
θ̂adj
n − θ0

)
→ N (0, I) as n → ∞
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Suggestion: Variance-adjusted pseudo posterior

We suggest to use the power of the adjusted weights κwi,

fadj(θ|y1, . . . , yn, w1, . . . , wn) ∝
n∏

i=1

f(yi|θ)κwi ·f(θ) where κ =

∑n
j=1 wj∑n
j=1 w

2
j

.

Then,

3. In SRS, the adjusted pseudo posterior becomes the posterior distribution

disregarding the survey weights, i.e.,

κwi =

∑n
j=1

N
n∑n

j=1
N2

n2

N

n
= 1 ⇒

n∏
i=1

f(yi|θ)κwi · f(θ) =
n∏

i=1

f(yi|θ) · f(θ)
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Simulation study: Comparison three synthesis methods

1. No weight, ignoring survey weights,
∏n

i=1 f(yi|θ) · f(θ).

2. Pseudo posterior with the original survey weights,
∏n

i=1 f(yi|θ)wi · f(θ).

3. Adjusted pseudo posterior,
∏n

i=1 f(yi|θ)κwi · f(θ).

Sampling Methods No weight Pseudo Adjusted

Simple Random Sampling

E( ˆ̄Y1)− Ȳ1 0.00 0.00 0.00

V ( ˆ̄Y1) 0.027 0.027 0.028

E(V̂ ( ˆ̄Y1)) 0.025 0.001 0.025

95% C.I coverage 0.928 0.286 0.922

Poisson Sampling

E( ˆ̄Y1)− Ȳ1 2.02 0.00 0.00

V ( ˆ̄Y1) 0.030 0.031 0.031

E(V̂ ( ˆ̄Y1)) 0.025 0.001 0.027

95% C.I coverage 0.000 0.298 0.924
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Concluding remarks

1. Disregarding sampling weights results in biased estimation when the sample

is collected with unequal probability sampling.

2. The (original) pseudo posterior approach results in variance

underestimation.

3. The suggested pseudo likelihood approach with the adjusted weight

results in correct estimation with imputed (and synthetic) data.
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Thank you!

Contact Information

Hang Kim (hang.kim@uc.edu)

Division of Statistics and Data Science
Department of Mathematical Sciences
University of Cincinnati
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Appendix: Development in joint modeling
▶ What distribution is good to fit the empirical density?

⇒ Mixture distribution f(yi|w,µ,Σ) =
∑6

k=1 wk N (yi;µk,Σk)

▶ Estimated by a nonparameteric Bayesian model

▶ Jerry Reiter (Duke) http://www2.stat.duke.edu/∼jerry/papers.html
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⇒ Generated from a mixture of 6 multivariate normal distributions 1

f(yi|w,µ,Σ) =

6∑
k=1

wk N (yi;µk,Σk)

⇒ Also represented by using a membership indicator zi ∈ {1, . . . , 6}

f(zi|w) ∼ Categorical(w1, . . . , w6), f(yi|µ,Σ, zi) ∼ N(yi;µzi ,Σzi)

such that f(yi|w,µ,Σ) =

∫
f(zi|w)f(yi|µ,Σ, zi)dzi

1w = (w1, . . . , w6): Importance weight

15
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Nonparametric Bayes: Dirichlet process Gaussian mixture

▶ Challenges for a mixture of normal (Gaussian) distributions

1. Simultaneous estimation wk, µk, Σk for k = 1, . . . ,K

2. Effective number of mixture components (how many normal kernels?)

⇒ Dirichlet process: Let data inform the decision

▶ Dirichlet process (DP) prior: Stick-breaking representation

wk = νk
∏
g<k

(1− νg) for k = 1, . . . ,K

νk|α ∼ Beta(1, α) for k = 1, . . . ,K − 1; νK = 1,

α ∼ Gamma(aα, bα).

The DP Gaussian mixture is a famous form of nonparametric Bayesian models.
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Stick-breaking Representation (Sethuraman 1994)
▶ Automatically determines wk, reflecting information from xi

pk ∼ Beta(1, α)

w1 = p1, w2 = p1 (1− w1), w3 = p2 (1− w1 − w2), . . .(
1−

∑k−1
g=1 wg

)
pk

wk

▶ Concentration parameter α
▶ Larger α → smaller E(pk) =

1
1+α

→ more number of components used
17
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DP mixture model decides

1. how many components are to be used

2. contribution of each component to explain the empirical dist’n

3. location and shape of each normal component

based on data information
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Nonparametric Bayesian Data Synthesis for Cont. Data

1. Likelihood: Mixture Normals

p(yi|A) ∝

(
K∑

k=1

wkN(yi|µk,Σk)

)
I(yi ∈ A)

▶ A: support of original values (예: 남자 종사자수 ≤ 총 종사자수)

2. Prior for wk: Dirichlet process (DP) model

▶ w1 = p1

▶ wk = pk
(
1−

∑k−1
g=1 wg

)
for k = 2, . . . ,K

▶ pk ∼ Beta(1, α)

3. Conjugate priors for µk and Σk: Normal-Inverse-Wishart

4. Weak priors for other hyperparameters
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MCMC Steps

Most updates are based on Gibbs, i.e., closed forms of conditional

distributions.

1. Update∗ {µk,Σk} given Yn = {yi;yi ∈ A} and Zn = {z1, . . . , zn}.

2. Update the membership indicator zi

3. Update component weight w = (w1, . . . , wK)

4. Generate synthetic data ỹ given {µk,Σk, wk}

5. Repeat Step 1 – 4
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