Estimating Preferences Over Data to Inform Statistical Disclosure Control Decisions

Elan Segarra

U.S. Bureau of Labor Statistics

Privacy and Public Policy Conference September 14th, 2024

Disclaimer: The views expressed herein are those of the author(s) and do not necessarily reflect those of the Federal Government, Department of Labor, or the Bureau of Labor Statistics. All results have been reviewed to ensure that no confidential information is disclosed.

Two Margins of Choice within SDC Methods

Extensive Margin	Intensive Margin
How much total acceptable	Where to distribute the
risk?	accuracy?
Cell Supp	ression
Which cells are sensitive?	Which complementary
Identification bounds?	suppressions?
Differential	Privacy
What is the privacy budget	How to allocate $arepsilon$ across
(i.e. ε)?	potential publications?

The work presented here focuses on the intensive dimension

 $_{\rm 2/16}--$ U.S. Bureau of Labor Statistics - <code>bis.gov</code>

Project Overview

<u>Goal</u>: Quantify data users' preferences over statistics and incorporate them into the intensive margin of SDC decisions.

Approach:

- 1. Estimate a nested logit model of consumer preferences.
- 2. Generate valuations for potential statistics using preferences.
- 3. Optimize SDC intensive decisions using valuations.

Application:

- Census of Fatal Occupational Injuries: Data being consumed.
- Google Analytics: Pageview data used to estimate preferences.
- Significant heterogeneity in preferences over characteristics with highest value on breakdowns by employment status.
- Estimated cell/table valuations are used in 2 SDC approaches: cell suppression and differential privacy.

 $_{3\,/\,16}--$ U.S. Bureau of Labor Statistics - $\tt bis.gov$

Application: Subject Data - CFOI

The Census of Fatal Occupational Injuries (CFOI):

- Annual census of fatal work injuries collected since 1992.
- Compiled by a Federal-State cooperative program which collects data info multiple sources (police reports, news, OSHA investigations, etc.).
- Compiled data includes narratives, injury codes (OIICS), geography, timing, and demographic information.

 $4\,/\,16 - U.S.$ Bureau of Labor Statistics - $\mathtt{bis.gov}$

Application: Subject Data - CFOI

The Census of Fatal Occupational Injuries (CFOI):

- Annual census of fatal work injuries collected since 1992.
- Compiled by a Federal-State cooperative program which collects data info multiple sources (police reports, news, OSHA investigations, etc.).
- Compiled data includes narratives, injury codes (OIICS), geography, timing, and demographic information.

Disclosure control is particularly difficult for CFOI:

- It is a census, the counts are small, and some data is public.
- BLS publishes many tables/figures/statistics using CFOI (e.g. industry and occupational breakdowns).
- Currently uses cell suppression to protect confidentiality.

Model of Consumer Choice Over Statistics

Three important objects make up the model:

- 1. A **statistic** is an individual scalar.
 - Ex: The count of work fatalities in the construction sector
- 2. A publication is a collection of statistics.
 - Ex: A table/figure of work fatality counts by industry
- 3. A **market** consists of a set of publications at a specific time from which a data consumer can choose.
 - Ex: On BLS.gov a data consumer can choose to view fatality counts by employee status, industry, occupation, or age group

Key insight: Observing which publications are chosen (i.e. clicked on) reveals preferences over the underlying statistics

Model of Consumer Choice: Nested Logit

Consumer i has indirect utility from publication p in market t given by

$$U_{ipt} = \underbrace{\frac{1}{|S_p|} \sum_{s \in S_p} X_{st}\beta + Z_{pt}\alpha + \xi_{pt}}_{\equiv \delta_{pt}} + \varsigma_{ig} + (1 - \sigma)\epsilon_{ipt}$$

 S_p : Set of statistics included in publication p

 X_{st} : Observable characteristics of statistic *s* (eg ind. breakdown) Z_{pt} : Observable characteristics of publication *p* (eg bar chart) ξ_{pt} : Unobservable stat. characteristics (eg ugly presentation) ς_{ig} : Unobservable correlated nest shock (eg broken site link) ϵ_{ipt} : Unobservable characteristics (eg researcher vs layperson)

Objects of interest: β and α quantify preferences across characteristics

 $6\,/\,16 - U.S.$ Bureau of Labor Statistics - $\mathtt{bis.gov}$

Model of Consumer Choice: Utility Maximization

If users choose the publication (e.g. table) that maximizes their indirect utility, then the observed "market share" of publication p in time period t is given by

$$s_{pt} = rac{\exp\left(rac{\delta_{pt}}{1-\sigma}
ight)}{D_g^{\sigma}\sum_h D_h^{1-\sigma}} \qquad ext{where} \qquad D_g = \sum_{k \in g} \exp\left(rac{\delta_{kt}}{1-\sigma}
ight)$$

Note: "Market share" = $s_{pt} = \frac{q_{pt}}{M_t} = \frac{pageviews}{site visitors}$

Estimation:

1. Inversion step (the "magic" of logit):

$$\ln s_{\rho t} - \ln s_{0t} = \tilde{X}_{\rho t}\beta + Z_{\rho t}\alpha + \sigma \ln s_{\rho|g} + \xi_{\rho t}$$

2. Estimate using instrumental variables.

Data: Google Analytics

Google Analytics

- Granular data on pageviews, duration, and even demographics
- There are 28 different tables/figures each published over multiple reference years
- Relative pageviews function as our measure of choice among consumers

Weekly Pageviews for 'Table A-1: Fatal occupational injuries by industry and event'

Data: Extracting Characteristics

Characteristics are manually coded for each site, such as

- ind = includes breakdown by industry sectors
- *format* = bar chart, table, time series etc.
- *multiyear* = includes more than one year of data
- curr_year = includes most recent RY (at view time)
- exposition = includes exposition along with data

Estimation Results: Statistic Characteristics

Though the exact values of $\hat{\beta}$ are difficult to interpret, their relative ordering reflects which breakdowns are more valued by data consumers.

10 / 16 — U.S. BUREAU OF LABOR STATISTICS ${\scriptstyle \bullet}$ bis.gov

Statistical Disclosure Control (SDC)

Consider these 2 tables of synthetic CFOI statistics:

Table 1	1: Fatal	_	Table 2	2: Fat			
		Year					Ind
Age	2019	2020	2021	Total	_	Age	Con
< 20	2	3	8	13	-	< 20	4
20-34	29	27	34	90		20-34	15
35-54	51	46	55	152		35-54	29
\geq 55	49	43	57	149	_	\geq 55	31
Total	131	119	154	404	_	Total	79

Table 2: Fatalities by Age and Industry

	Indust	2021)		
Age	Cons. Mfg. Trade		Total	
< 20	4	3	1	8
20-34	15	9	10	34
35-54	29	15	11	55
≥ 55	31	12	14	57
Total	79	39	36	154

We consider two SDC methods:

- 1. Cell Suppression
- 2. Differential Privacy

How can we use our estimated preferences to inform our SDC methods? \Rightarrow Computing valuations over cells and/or tables.

11 / 16 — U.S. BUREAU OF LABOR STATISTICS - ${\sf bis.gov}$

Computing Valuations

Could construct mean utilities, $\mathbb{E}\left[\widehat{U}_{ipt}\right]$ \Rightarrow several issues.

 $12\,/\,16 -$ U.S. BUREAU OF LABOR STATISTICS - <code>bis.gov</code>

Computing Valuations

Could construct mean utilities, $\mathbb{E}\left[\widehat{U}_{ipt}\right] \Rightarrow$ several issues. Instead we define the estimated valuation of publication p as

$$\widehat{v}_{p} = \mathbb{E}\left[P(\text{Choose pub. } p)\right] = rac{\exp\left(\widetilde{x}_{p}\widehat{eta} + z_{p}\widehat{lpha}
ight)}{\sum_{k=1}^{P}\exp\left(\widetilde{x}_{k}\widehat{eta} + z_{k}\widehat{lpha}
ight)}.$$

This approach assesses value using a hypothetical market including only the potential cells/tables under consideration.

Example

Given those 2 table options and their characteristics:

- $\hat{v}_1 = P(\text{Choose Table 1}) = 0.361$
- $\hat{v}_2 = P(\text{Choose Table 2}) = 0.639$

The publication by age and industry is 77% more valuable (on average) than the publication by age and reference year.

SDC Method: Tabular Cell Suppression

- Sensitive cells are suppressed to protect confidentiality.
- Additional cells (i.e. complementary/secondary) often need to be suppressed.

Age	Cons.	Mfg.	Trade	Total
< 20	4	3	1	8
20-34	15	9	10	34
35-54	29	15	11	55
\geq 55	31	12	14	57
Total	79	39	36	154

13 / 16 — U.S. BUREAU OF LABOR STATISTICS ${\scriptstyle \bullet}$ bis.gov

SDC Method: Tabular Cell Suppression

- Sensitive cells are suppressed to protect confidentiality.
- Additional cells (i.e. complementary/secondary) often need to be suppressed.

	Primary				
Age	Cons.	Mfg.	Trade	Total	Suppression
< 20	4	3	1	8	-
20-34	15	9	10	34	
35-54	29	15	11	55	
\geq 55	31	12	14	57	_
Total	79	39	36	154	

13 / 16 — U.S. BUREAU OF LABOR STATISTICS ${\scriptstyle \bullet}$ bis.gov

SDC Method: Tabular Cell Suppression

- Sensitive cells are suppressed to protect confidentiality.
- Additional cells (i.e. complementary/secondary) often need to be suppressed.

There are often multiple options for complementary suppressions. Estimated valuations *over the cells* can help guide decisions.

13 / 16 — U.S. BUREAU OF LABOR STATISTICS - ${\sf bis.gov}$

Table 1: Fatalities by Age and Year					Value	Table 2	2: Fatali	ties by A	Age and I	ndustry
Year						Industry (for 2021)				
Age	2019	2020	2021	Total		Age	Cons.	Mfg.	Trade	Total
< 20	2	3	8	13	2.5%	< 20	4	3	1	8
20-34	29	27	34	90	2.370	20-34	15	9	10	34
35-54	51	46	55	152		35-54	29	15	11	55
\geq 55	49	43	57	149		\geq 55	31	12	14	57
Total	131	119	154	404	0%	Total	79	39	36	154

Individual cell valuations are used as an input into any CSP solver to find optimal complementary suppressions.

Table 1: Fatalities by Age and Year					Value	Table 2	2: Fatali	ties by A	Age and I	ndustry
Year					5%	Industry (for 2021)				
Age	2019	2020	2021	Total		Age	Cons.	Mfg.	Trade	Total
< 20	2	3	8	13	2.5%	< 20	4	3	1	8
20-34	29	27	34	90	2.370	20-34	15	9	10	34
35-54	51	46	55	152		35-54	29	15	11	55
≥ 55	49	43	57	149		\geq 55	31	12	14	57
Total	131	119	154	404	0%	Total	79	39	36	154

Individual cell valuations are used as an input into any CSP solver to find optimal complementary suppressions.

Note: The optimization will be limited by the granularity available in the preference data. For example:

- Without separate publications for Trade versus Mfg, estimated valuations are constant across industries.
- Can result in multiple optima.

14 / 16 — U.S. BUREAU OF LABOR STATISTICS - <code>bis.gov</code>

Disclosure Application: Differential Privacy

Differential Privacy (DP):

- Algorithm property that provides a provable confidentiality guarantee and typically involve noise injection.
- Increasing adoption of DP across the NSAs.
- Typically involve a privacy budget, $\varepsilon > 0$.
 - Larger $\varepsilon \Rightarrow$ less noise and less security
 - Smaller $\varepsilon \Rightarrow$ more noise and more security

15 / 16 — U.S. BUREAU OF LABOR STATISTICS \cdot dis.gov

Disclosure Application: Differential Privacy

Differential Privacy (DP):

- Algorithm property that provides a provable confidentiality guarantee and typically involve noise injection.
- Increasing adoption of DP across the NSAs.
- Typically involve a privacy budget, $\varepsilon > 0$.
 - Larger $\varepsilon \Rightarrow$ less noise and less security
 - Smaller $\varepsilon \Rightarrow$ more noise and more security

Simple heuristic for leveraging estimated valuations:

- Allocate the privacy budget, ε , among publications, e.g.
 - For Table 1 and 2 use 0.361ε and 0.639ε .
 - More generally, for P potential publications
 - 1. Estimate valuations: $\widehat{v_1}, \ldots, \widehat{v_P}$
 - 2. For publication p use $\widehat{v_p}\varepsilon$ in the DP mechanism
- Maintains aggregate risk guarantee ε while ensuring more accuracy for higher valued statistics.

15 / 16 — U.S. BUREAU OF LABOR STATISTICS - ${\tt bis.gov}$

Conclusion

Summary:

- Simple framework for leveraging preferences over data:
 - 1. Estimate a nested logit model of consumer preferences.
 - 2. Generate valuations for potential statistics using preferences.
 - 3. Optimize over SDC intensive decisions using valuations.
- Proof of concept using CFOI:
 - Estimated preferences using GA pageviews.
 - Found significant heterogeneity in prefs over characteristics.
 - Illustrated use of cell/table valuations in two SDC methods: Cell Suppression and Differential Privacy

Future Work:

- Incorporate data from the BLS custom query tool.
- Explore the framework with other SDC methods and other BLS data products.
- Consider alternative information sources to identify preferences of other stakeholders.

16 / 16 – U.S. BUREAU OF LABOR STATISTICS - ${\tt bis.gov}$

CONTACT INFORMATION

Thank You!

Elan Segarra U.S. Bureau of Labor Statistics Office of Compensation and Working Conditions Segarra.Elan@BLS.gov

Nested Logit Model: Decision Tree

The nests (i.e. groups of related statistics/tables) line up with the likely route a user takes to access the statistic or table:

Can possibly generalize to other access mediums (e.g. twitter or API) or even to entire catalog of BLS data products.

Back

Estimation

To put all of this in a more familiar form, if we define

$$y_{jt} = \ln q_{jt} - \ln q_{0t}$$

Then we have

$$y_{jt} = X_{jt}\beta + \sigma \ln s_{j|g} + \xi_{jt}$$

and since y_{jt}, X_{jt} , and $s_{j|g}$ are all observed we can use traditional regression methods to estimate β and σ .

Estimation

To put all of this in a more familiar form, if we define

$$y_{jt} = \ln q_{jt} - \ln q_{0t}$$

Then we have

$$y_{jt} = X_{jt}\beta + \sigma \ln s_{j|g} + \xi_{jt}$$

and since y_{jt}, X_{jt} , and $s_{j|g}$ are all observed we can use traditional regression methods to estimate β and σ .

Open question: Can we use OLS or is there endogeneity that would require something like IV?

- Reminder: ξ_{jt} are unobs. table characteristics
- Seems like obs. table characteristics (X_{jt}) are exogenously determined by BLS

Estimation Results: Publication Characteristics

Similarly, the exact values of $\hat{\theta}$ are difficult to interpret, but they suggest which publication chars. are valued by data consumers.

Regression Results (Full)

	(1)	(2)
Employment Status	0.518**	0.518**
	(0.037)	(0.038)
Industry	-0.112**	-0.112**
	(0.030)	(0.033)
Occupation	-0.459**	-0.459**
	(0.034)	(0.036)
Gender	0.069	0.069
	(0.072)	(0.058)
Injury Event	-0.453**	-0.453**
	(0.025)	(0.029)
Age	-0.525**	-0.525**
	(0.042)	(0.038)
Geo. State	-0.350**	-0.350**
	(0.088)	(0.107)
Race/Ethnicity	-0.509**	-0.509**
	(0.034)	(0.034)
Document Source	-0.958**	-0.958**
	(0.054)	(0.061)
Constant	-3.308**	-3.308**
	(0.182)	(0.118)

**	indicates	significance	at	the	0.01	level.
----	-----------	--------------	----	-----	------	--------

- U.S. BUREAU OF LABOR STATISTICS • bis.gov

	(1)	(2)
Type: Count	-0.016	-0.016
	(0.030)	(0.028)
Type: Percent	-0.482**	-0.482**
	(0.075)	(0.062)
Type: Rate	-0.179**	-0.179**
	(0.036)	(0.034)
Form: Bar Chart	0.337**	0.337**
	(0.051)	(0.060)
Form: Line Chart	0.660**	0.660**
	(0.058)	(0.051)
Multiple Ref. Years	-0.274**	-0.274**
	(0.021)	(0.025)
Inc. Current Ref. Year	1.170**	1.170**
	(0.059)	(0.080)
Nest Shares	0.358**	0.358**
	(0.029)	(0.037)
Mkt FE	Yes	Yes
Robust SE	No	Yes
N	5870	5870

** indicates significance at the 0.01 level.

–Back–

