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Differential Privacy (DP) (Dwork, McSherry, et al., 2006)

A large family of technical standards (i.e. mathematical specifications)

that

conceptualizes privacy loss as a rate of change: the change in the (distribution

of) the output statistics per unit change in the input data.

• Key idea: To protect privacy is to limit this rate of change.

• Different DP specifications correspond to different choices of how (and where)

to measure input and output changes, in addition to how much to control this

rate.

• These choice are the building blocks of a DP specification:

1. The protection domain (X )

2. The scope of protection (D )

3. The protection unit (dX )

4. The standard of protection (dPr)

5. The intensity of protection (ε)
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The Derivative of DP

A population Dataset x Statistic T (x,Z)Data collection Data release

Thinking about the distribution Px of T as a function of x ∈ X , its derivative

Lipschitz constant is the smallest ε such that

dPr(Px′ ,Px)≤ εdX (x′, x),

for all x, x′∈ D and all universes D ∈ D .

Definition: The statistic T is ε-differentially private if its Lipschitz constant is ε.

• Recall that Lipschitz continuity ≈ differentiability.

• Lipschitz constant is the supremum of the derivative.

Takeaway: Differential privacy is a “bound on the derivative” of T .

• The choice of X , D , dPr and dX determine the flavour of DP.
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A DP Specification (X ,D , dX , dPr, ε)

The building blocks of DP:

• The protection domain

▶ Who is eligible for protection?
▶ Defined by the set X of possible input datasets.

• The scope of protection

▶ Where does the protection extend to?

▶ Instantiated by the multiverse D , which is a collection of universes D ⊂ X .

• The protection unit

▶ What is the granularity of protection?

▶ Conceptualized by the input divergence dX on X .

• The standard of protection

▶ How to measure change in the output variations?

▶ Captured by the output divergence dPr on probability distributions.

• The intensity of protection

▶ How much protection is afforded?

▶ Quantified by the privacy-loss budget εD .
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Some Examples in the Literature

X : DP for network data (Hay et al., 2009) for geospatial data (Andrés et al., 2013) Pufferfish DP

(Kifer & Machanavajjhala, 2014) noiseless privacy (Bhaskar et al., 2011) privacy under partial

knowledge (Seeman et al., 2022) privacy amplification (Beimel et al., 2010; Balle et al., 2020; Bun et al.,

2022)

D : privacy under invariants (Ashmead et al., 2019; Gong & Meng, 2020; Gao et al., 2022; Dharangutte et al.,

2023) conditioned or empirical DP (J. M. Abowd et al., 2013; Charest & Hou, 2016) personalized DP

(Ebadi et al., 2015; Jorgensen et al., 2015) individual DP (Soria-Comas et al., 2017; Feldman & Zrnic, 2022)

bootstrap DP (O’Keefe & Charest, 2019) stratified DP (Bun et al., 2022) per-record DP (Seeman et al.,

2023+) per-instance DP (Wang, 2018; Redberg & Wang, 2021)

dX : (R, ε)-generic DP (Kifer & Machanavajjhala, 2011) edge vs node privacy (Hay et al., 2009;

McSherry & Mahajan, 2010) d-metric DP (Chatzikokolakis et al., 2013) Blowfish privacy (He et al., 2014)

element level DP (Asi et al., 2022) distributional privacy (Zhou et al., 2009) event-level vs

user-level DP (Dwork et al., 2010)

dPr: (ε, δ)-approximate DP (Dwork, Kenthapadi, et al., 2006) Rényi DP (Mironov, 2017)

concentrated DP (Bun & Steinke, 2016a) f -divergence privacy (Barber & Duchi, 2014; Barthe &

Olmedo, 2013) f -DP (including Gaussian DP) (Dong et al., 2022)



Comparisons: US Decennial Censuses

• We provide a data swapping algorithm which is reminiscent of the statistical

disclosure method used in the 1990, 2000 and 2010 US Decennial Censuses.

• This method does not satisfy the original DP specification – pure ε-DP (Dwork,

McSherry, et al., 2006) – because it leaves invariant some statistics.

• For the same reason, the principal method used in the 2020 Census, the

TopDown Algorithm, does not satisfy any standard DP specification.

• Instead, we prove that

▶ our swapping algorithm satisfies ε-DP, subject to the invariants it induces; and

▶ TopDown satisfies ρ-zCDP (Bun & Steinke, 2016b), subject to its invariants.
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Comparisons: US Decennial Censuses

dPr dX (Post-Imputation Unit) Invariants (D) Privacy-Loss Budget

TopDown
∗ Dnor dp

Ham (person) Population (state) PL & DHC:

Total housing units (block) ρ2 = 15.29

Occupied group quarters (block) ε = 52.83 (δ = 10
−10

)

Structural zeros

SafeTab
∗∗ Dnor dp

Ham (person) None DDHC-A: ρ2 = 19.776

DDHC-B & S-DHC: TBD.

Swapping dMult dh
Ham (household) Varies but much ε between 9.37-19.38

greater than TDA

∗
(J. Abowd et al., 2022)

∗∗
(Tumult Labs, 2022)

• X is always the space of possible Census Edited Files, XCEF .

• Dnor(P,Q) = supα>1

1√
α

max
[√

Dα(P||Q),
√

Dα(Q||P)
]
is the normalised Rényi metric [zero

concentrated DP] (with Dα the Rényi divergence of order);

• dMult(P,Q) = supS∈F

∣∣∣ln P(S)
Q(S)

∣∣∣ is the multiplicative distance (pure DP); and

• du
Ham is the Hamming distance on units u (with p = post-imputation person, h = post-imputation household).

• D is the invariant-induced multiverse Dc =
{
{x′ ∈ X ′ : c(x) = c(x′)} : x ∈ X

}
.



DP’s Framing of Data Privacy (Seeman & Susser, 2023)

1. DP is a condition on the statistic T :

▶ Conceives of data privacy as robustness

▶ Focuses on forward-looking, individual-based harms

2. (More exactly) DP is a restriction on the data-release model {Px : x ∈ X}

▶ Conceives of data privacy as a limit on probabilistic inference
▶ Focus on two aspects of forward-looking harms: the probability and strength of

an inferential, individual-based disclosure (IIB)
▶ Assumes a way to quantify IIBs (e.g. via the privacy loss random variable)

3. DP is not a holistic framework for assessing privacy

▶ The theory of DP brackets other privacy concerns

▶ The practice of DP is often left stranded

▶ DP needs to be integrated into broader theories of privacy (Benthall & Cummings, 2024)
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Data Swapping Visualisation

State Location Number of adults Number of children Age1 Race1 · · ·
MA Cambridge 2 2 45 White · · ·
TX Houston 1 0 28 Hispanic · · ·
WA Tacoma 5 0 67 Asian · · ·
MA Somerville 2 2 50 Black · · ·
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Data Swapping Visualisation
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Changes: Interior cells of VRest × VSwap.

Invariants:

1. VStratify × VRest

2. VStratify × VSwap
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Does Swapping Satisfy Differential Privacy?

• Not under the traditional formulation of DP...

• Because swapping has invariants cSwap – functions of the observed data which

are released without noise.

If a mechanism T contains an invariant (and x, x′ have different values for this invari-

ant), then Px and Px′ do not have common support, and so

dMult

[
Px,Px′

]
= Dnor

[
Px,Px′

]
= ∞.
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Does the 2020 US Census Satisfy Differential Privacy?

• Not under the traditional formulation of DP...

• Because the TopDown Algorithm (TDA) has invariants cTDA.– functions of the

observed data which are released without any noise added.

If a mechanism T contains an invariant (and x, x′ have different values for this

invariant), then Pr(T (x) ∈ ·) and Pr(T (x′) ∈ ·) don’t have common support and

so

dMult

[
Pr(T (x) ∈ ·),Pr(T (x′) ∈ ·)

]
= Dnor

[
Pr(T (x) ∈ ·),Pr(T (x′) ∈ ·)

]
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Does the 2020 US Census Satisfy Differential Privacy?

• Not under the traditional formulation of DP...

• Because the TopDown Algorithm (TDA) has invariants cTDA.– functions of the

observed data which are released without any noise added.

Modifying the definition of DP:

dPr
[
Px,Px′

]
≤ ε dX (x, x′).

for all possible data values x, x′

which agree on the invariants.

▶ This is a necessary and sufficient modification for the release of invariants.
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Swapping Satisfies DP, Subject to Its Invariants

Permutation swapping

Input: a dataset x.
Define strata as groups of records which match on the swap key VStratify.

Within each stratum:

1. Select each record independently with probability p (the swap rate).

2. Randomly permute swapping variable VSwap of selected records.

Output: the swapped dataset w.

Permutation swapping is DP subject to its invariants, with input divergence

dX = du
Ham, output divergence dPr = dMult and budget

ε =

ln(b + 1)− ln o if 0 < p ≤ 0.5,

max
{
ln o, ln(b + 1)− ln o

}
if 0.5 < p < 1,

where o = p/(1− p) and b is the maximum stratum size.
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Swap Rate to Privacy Loss Budget (Nominal) Conversion

Conversion between the swap rate (p) and the nominal PLB (ε) at different levels of

b. Note that:

1. For each b, there’s a smallest attainable εb > 0;

2. For each b, every ε > εb is satisfied by two different swap rates;

3. (counterintuitive) For the same swap rate, the larger the b, the larger the ε!



The TopDown Algorithm (TDA) (J. Abowd et al., 2022)

Two-step procedure:

0. Start with a Census edited file x ∈ XCEF.

1. Add Gaussian noise to cells:

T(x) = q(x) +W,

whereW ∼ NZ(0,Σ), so that T satisfies DP(XCEF, {XCEF}, dp
Ham,Dnor) with

budget ρTDA (Canonne et al., 2022).

2. “Post-process”: find dataset z with q(z) close to T(x) such that

cTDA(z) = cTDA(x).

TDA satisfies DP(XCEF,DcTDA , d
p
Ham,Dnor) with budget ρTDA.
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Theorem: TDA Satisfies DP, Subject to Its Invariants

Let cTDA : XCEF → Rl
be the invariants of TDA and let DcTDA be the induced data

multiverse:

DcTDA = {D ⊂ XCEF | cTDA(x) = cTDA(x′) ∀x, x′ ∈ D}.

• TDA satisfies DP(XCEF,DcTDA , d
p
Ham,Dnor) with privacy budget ρTDA = 2.63 (for

the PL Redistricting File) and ρTDA = 15.29 (for the DHC).

• Let c′ be any proper subset of TDA’s invariants. TDA does not satisfy

DP(XCEF,Dc′ , dX ,Dnor) with any finite budget ρ.
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What if the 2020 Census Used Swapping?

The total nominal ε achievable by applying swapping to the 2020 Decennial Census

for a variety of VStratify, VSwap, and swap rate choices.

VStratify VSwap b total ε total ε Largest stratum

p = 5% p = 50%

state county 13680081 19.38 16.43 California

state × household size county 3653802 18.06 15.11 California, 3-household

county tract 3445076 18.00 15.05 LA County

county × household size tract 853003 16.60 13.66 LA County, 3-household

block group block 21535 12.92 9.98 a FL block group

block group × household size block 11691 12.31 9.37 a FL block group, 3-household

Note. For a fixed (VStratify, VSwap, p) setting, the nominal ε would be the total PLB
for all data products derived from the swapped dataset, including P.L. 94-171, DHC,

Detailed DHC for both persons and household product types.



Permutation Swapping



Intuition of the Proof that Permutation Swapping Is DP

1. We need to show that, for fixed datasets x, x′,w in the same data universe D,

Pr(σ(x) = w) ≤ exp(du
Ham(x, x

′)ε) Pr(σ′(x′) = w),

2. We can show that there exists a derangement ρ of m records such that

x = ρ(x′).

3. There is a bijection between the possible σ and σ′
given by σ′ = σ ◦ ρ.

4. Hence, if mσ is the number of records deranged by σ, we have

mσ −m ≤ mσ′ ≤ mσ +m.

5. This gives a bound on Pr(σ)/Pr(σ′) in terms of omσ−mσ′
and the ratio between

the number of derangements of mσ′ and of mσ .

6. For o ≤ 1, this can be bounded by o−m(b+ 1)m using the above inequality. The

result for 0 < p ≤ 0.5 then follows with some algebraic simplification.



The TopDown Algorithm (J. Abowd et al., 2022)



Examples of D , dX and dPr

1. An invariant-compliant data universe:

Dc =
{
D ⊂ X : c(x) = c(x′) ∀x, x′ ∈ D

}
,

for some invariants c : X → Rl
.

2. Data divergence dX induced by a “neighbour” relation:

dX (x, x′) =


0 if x = x′,

1 if x and x′ are “neighbours”,

∞ otherwise.
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Examples of D , dX and dPr

3. Divergence dPr on (the probability distributions over) the output space

▶ Pure ε-DP (Dwork, McSherry, et al., 2006): dPr is the multiplicative distance

Mult(P,Q) = sup

{∣∣∣∣ln P(S)

Q(S)

∣∣∣∣ : event S} .

▶ Approximate (ε, δ)-DP (Dwork, Kenthapadi, et al., 2006):

Mult
δ(P,Q) = sup

event S

{
ln

[P(S)− δ]+

Q(S)
, ln

[Q(S)− δ]+

P(S)
, 0

}
,

▶ Zero Concentrated DP (Bun & Steinke, 2016a):

Dnor(P,Q) = sup
α>1

1

√
α

max
[√

Dα(P||Q),
√

Dα(Q||P)
]
,

where Dα is the Rényi divergence of order α:

Dα(P||Q) =
1

α− 1

ln

∫ [
dP

dQ

]α
dQ,
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Numerical demonstration: 1940 Census full count data

• VSwap: household’s county;

• VStratify (swap key): the number of persons per household × household’s state;

• VHold − VStratify: dwelling ownership.

The invariants cSwap are

1. Total number of owned vs rented dwellings at each household size at the state

level;

2. Total number of dwellings at each household size at the county level.

swap rate 0.01 0.05 0.10 0.50

ε 17.08 15.43 14.68 12.48

Table: Conversion of swap rate to ε (PLB). Under this swapping scheme, the largest stratum

size is b = 264, 331, the number of all two-person households of Massachusetts.



Numerical Demonstration: 1940 Census Full Count Data

Table: Two-way tabulations of dwelling ownership by county based on the 1940 Census full count for Massachusetts

(left) and one instantiation of the Permutation Algorithm at p = 50% (right). Total dwellings per county, as well as total

owned versus rented units per state, are invariant. All invariants induced by the Algorithm are not shown.

county owned rented total owned rented total

(swapped) (swapped) (swapped)

Barnstable 7461 3825 11286 5907 5379 11286

Berkshire 14736 18417 33153 13770 19383 33153

Bristol 33747 63931 97678 35537 62141 97678

Dukes 1207 534 1741 946 795 1741

Essex 53936 81300 135236 52631 82605 135236

Franklin 7433 6442 13875 6337 7538 13875

Hampden 30597 58166 88763 32267 56496 88763

Hampshire 9427 8630 18057 8145 9912 18057

Middlesex 104144 147687 251831 100372 151459 251831

Nantucket 593 432 1025 471 554 1025

Norfolk 44885 40285 85170 38566 46604 85170

Plymouth 24857 23882 48739 21549 27190 48739

Suffolk 49656 176553 226209 67357 158852 226209

Worcester 53126 78535 131661 51950 79711 131661

total 435805 708619 1144424 435805 708619 1144424



Numerical Demonstration: 1940 Census Full Count Data
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Accuracy: 1940 Decennial Census, Massachusetts, Dwelling Ownership

Figure: Mean absolute percentage error (MAPE) in the two-way tabulation of dwelling

ownership by county induced by the Permutation Algorithm applied to the 1940 Census full

count data of Massachusetts, at different swap rates from 1% to 50%. Each boxplot reflects

20 independent runs of the Algorithm at that swap rate.



Extending “Neighbour” Divergences to Metrics on X

A divergence defined by neighbours:

dX (x, x′) =


0 if x = x′,

1 if x and x′ are “neighbours”,

∞ otherwise,

can always be sharpened to a metric d∗X (x, x′) defined as the length of a shortest path between X and

X′
in the graph on X with edges given by r . For example the extension of the bounded-neighbours is the

Hamming distance on unordered datasets:

duHam(x, x
′) =

 1

2
|x⊖ x′| if |x| = |x|,

∞ otherwise

and the extension of unbounded-neighbours is the symmetric difference distance:

duSymDiff(X,X
′) =

∣∣X ⊖ X′∣∣.
The superscript

u
emphasizes that these distances are defined with respect to a choice of the privacy

unit u.



Sufficiency and Necessity of Restricting the Data Universe

D

1. For any dX and dPr, the mechanism T (x) = c(x) that releases the invariants
exactly satisfies (X ,Dc, dX , dPr) with privacy budget εD = 0.

2. Now suppose dPr(P,Q) = ∞ if dTV(P,Q) = 1. Let D be a data multiverse such

that there exists datasets x1, x2 in some data universe D0 ∈ D with dX (x1, x2) < ∞
and c(x1) ̸= c(x2). Then T does not satisfy (X ,D , dX , dPr) for any εD0

< ∞.

3. Suppose that a mechanism T varies within some universe D0 ∈ Dc in the sense

that there exists x, x′ ∈ D0 with dX (x, x′) < ∞ but Px ̸= Px′ .

When dPr is a metric, T satisfies (X ,Dc, dX , dPr) only if εD0
> 0.
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